Abstract

The study was conducted to evaluate the effect of minocycline against pesticide rotenone induced adverse effects in different rat brain regions. Assessment of oxidative stress, nitrite levels, degenerating neurons and level of cleaved caspase-3 was done in frontal cortex, mid brain, hippocampus and striatum regions of rat brain. In addition the expression profile of neuronal (MAP2), astrocytes (GFAP) and microglia (cd11b) markers was done after treatments. Rotenone induced DNA fragmentation was also assessed in all studied rat brain regions by utilizing comet assay. Rotenone administration caused significantly decreased level of glutathione along with increased level of nitrite and lipid peroxidation. Significant oxidative and nitrosative stress was also observed after rotenone administration which was considerably inhibited in minocycline treated rats in time dependent manner. Fluorojade staining and levels of cleaved caspase 3 showed the degeneration of neurons and apoptosis respectively in studied rat brain regions which were further inhibited with minocycline treatment. Rotenone administration caused significantly increased reactivity of astrocytes, microglia and altered neuronal morphology in rat brain regions which was also partially restored with minocycline treatment. In conclusion, present study showed that minocycline treatment attenuated the rotenone induced oxidative stress, nitrite level, degeneration of neurons, augmented glial reactivity and apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.