Abstract

Background: Extreme hyperbilirubinemia is treated with double volume exchange transfusion, which may take hours to commence. A neuroprotective agent that could be administered immediately might be clinically useful. Minocycline, an anti-inflammatory and anti-apoptotic semisynthetic tetracycline, prevents hyperbilirubinemia-induced cerebellar hypoplasia in Gunn rats. Acute brainstem auditory evoked potential (BAEP) abnormalities occur after giving sulfadimethoxine to 16-day-old jaundiced Gunn rats to displace bilirubin into tissue including brain. Objective: To assess whether minocycline is neuroprotective in this model of acute bilirubin encephalopathy. Methods: We recorded BAEPs at baseline and 6 h after injecting sulfadimethoxine. Minocycline 0.5 mg/kg (n = 4), 5 mg/kg (n = 9), 50 mg/kg (n = 9) or 500 mg/kg (n = 3, all died) was administered 15 min before sulfadimethoxine (0 h). Controls received saline followed by either sulfadimethoxine (n = 13) or saline (n = 7). Results: At 6 h total plasma bilirubin decreased from 10.84 ± 0.88 mg/dl (mean ± SD) to 0.70 ± 0.35 mg/dl (p <10<sup>–9</sup>) in all sulfadimethoxine-injected groups. At 6 h, there was complete protection against decreased amplitudes of BAEP waves II and III and increased I-II and I-III interwave intervals (brainstem conduction times corresponding to I–III and I–V in humans) with 50 mg/kg minocycline, and partial protection with lower doses. Conclusions: Minocycline 50 mg/kg 15 min prior to an intervention that normally produces acute bilirubin neurotoxicity is neuroprotective in jaundiced Gunn rat pups. Further studies are needed to investigate the temporal course and mechanism of neuroprotection. Minocycline, administered immediately, may be clinically useful in treating extreme neonatal hyperbilirubinemia and preventing kernicterus. We believe our model provides an efficient in vivomodel to screen and evaluate new agents that are neuroprotective against bilirubin toxicity and kernicterus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.