Abstract
Developmental exposure to ethanol may cause fetal alcohol spectrum disorders (FASD), and the immature central nervous system (CNS) is particularly vulnerable to ethanol. In addition to vulnerability in the developing brain, we previously showed that ethanol also caused neuroapoptosis, microglial activation, and neuroinflammation in the spinal cord. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We sought to determine whether minocycline could protect spinal cord neurons against ethanol-induced damage. In this study, we showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines in the developing spinal cord. Moreover, minocycline blocked ethanol-induced activation of glycogen synthase kinase 3 beta (GSK3β), a key regulator of microglial activation. Meanwhile, minocycline significantly restored ethanol-induced inhibition of protein kinase B (AKT), mammalian target of the rapamycin (mTOR), and ERK1/2 signaling pathways, which were important pro-survival signaling pathways for neurons. Together, minocycline may attenuate ethanol-induced damage to the developing spinal cord by inhibiting microglial activation/neuroinflammation and by restoring the pro-survival signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.