Abstract

Information geometry is used to elucidate convex optimization problems under L1 constraint. A convex function induces a Riemannian metric and two dually coupled affine connections in the manifold of parameters of interest. A generalized Pythagorean theorem and projection theorem hold in such a manifold. An extended LARS algorithm, applicable to both under-determined and over-determined cases, is studied and properties of its solution path are given. The algorithm is shown to be a Minkovskian gradient-descent method, which moves in the steepest direction of a target function under the Minkovskian L1 norm. Two dually coupled affine coordinate systems are useful for analyzing the solution path.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call