Abstract

As a generalization of the notion of measure, valuations have long played a central role in the integral geometry of convex sets. In recent years there has been a series of striking developments. Several examples were presented at this meeting, e.g. the work of Bernig and Fu on the integral geometry of groups acting transitively on the unit sphere, that of Hug and Schneider on kinematic and Crofton formulas for tensor valued valuations and a series of results by Ludwig and Reitzner on classifications of affine invariant notions of surface areas and of convex body valued valuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.