Abstract

We derive the fixed-$\mathrm{\ensuremath{\Lambda}}$ and unimodular propagators using the path integral formalism as applied to the Einstein-Cartan action. The simplicity of the action (which is linear in the lapse function) allows for an exact integration starting from the lapse function and the enforcement of the Hamiltonian constraint, leading to a product of Chern-Simons states if the connection is fixed at the endpoints. No saddle point approximation is needed. Should the metric be fixed at the endpoints, then, depending on the contour chosen for the connection, Hartle-Hawking or Vilenkin propagators are obtained. Thus, in this approach one trades a choice of contour in the lapse function for one in the connection, where appropriate. The unimodular propagators are also trivial to obtain via the path integral, and the previously derived expressions are recovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call