Abstract

In the critically ill, multiple drug therapies for acute and chronic conditions are often used at the same time and adverse drug events occur frequently. Many pharmacological and disease-related factors, e.g. altered renal and hepatic function, catecholamine-related circulatory changes, altered drug volume of distribution, enteral versus parenteral feeding and morbid obesity, along with concomitant multiple drug regimens may account for the wide inter-individual variability in drug exposure and response in critically ill patients and for the high risk for drug-drug interactions to occur. The practicing intensivist must remain aware of the major mechanisms for drug-drug interactions, among which the drug-metabolizing enzyme inhibitory or induction potential of associated chemical entities are paramount. Metabolism-based drug-drug interactions are largely due to changes in levels of drug-metabolizing enzymes caused by one drug, leading to changes in the systemic exposure clearance of another. Among the numerous drug-metabolizing enzymes identified to date, the activity of cytochrome P450s (CYP450) is a critical determinant of drug clearance and appears to be involved in the mechanism of numerous clinically relevant drug-drug interactions observed in critically ill patients. This manuscript will cover a practical overview of clinically relevant CYP450-mediated drug-drug interactions. Medications frequently used in the intensive care unit such as benzodiazepines, immunosuppressive agents, opioid analgesics, certain anticonvulsants, the azoles and macrolides have the potential to interact with CYP450-mediated metabolism and may lead to toxicity or therapeutic failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call