Abstract

A new sample preparation approach of combining a miniscale version of liquid-liquid extraction (LLE), termed miniscale-LLE (msLLE), with automated full evaporation dynamic headspace extraction (FEDHS) was developed. Its applicability was demonstrated in the extraction of several polycyclic aromatic hydrocarbons (PAHs) (acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene) from aqueous samples. In the first step, msLLE was conducted with 1.75 mL of n-hexane, and all of the extract was vaporized through a Tenax TA sorbent tube via a nitrogen gas flow, in the FEDHS step. Due to the stronger π-π interaction between the Tenax TA polymer and PAHs, only the latter, and not n-hexane, was adsorbed by the sorbent. This selectivity by the Tenax TA polymer allowed an effective concentration of PAHs while eliminating n-hexane by the FEDHS process. After that, thermal desorption was applied to the PAHs to channel them into a gas chromatography/mass spectrometric (GC/MS) system for analysis. Experimental parameters affecting msLLE (solvent volume and mixing duration) and FEDHS (temperature and duration) were optimized. The obtained results achieved low limits of detection (1.85-3.63 ng/L) with good linearity (r(2) > 0.9989) and high enrichment factors ranging from 4200 to 14 100. The optimized settings were applied to the analysis of canal water sampled from an industrial area and tap water, and this methodology was compared to stir-bar sorptive extraction (SBSE). This innovative combined extraction-concentration approach proved to be fast, effective, and efficient in determining low concentrations of PAHs in aqueous samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call