Abstract

Daily rhythms in behavior and physiology are observed in most organisms. These rhythms are controlled by internal self-sustained circadian ( approximately 24 h) clocks, which are present in virtually all cells. The 24-h oscillations are generated by a molecular mechanism entrained by external or internal time cues and which, in turn, regulate rhythmic outputs. In mammals, the circadian system comprises a master clock located in the hypothalamus that is directly entrained by the light-dark cycle and which coordinates the phases of local clocks in the periphery in order to ensure optimal timing of the physiology. Nuclear receptors (NRs) form a large family of transcription factors that include both ligand-inducible and orphan receptors. These NRs are key regulators of major biological processes such as reproduction, development, cell growth and death, inflammation, immunity, and metabolic homeostasis. Recent observations indicate that several NR signaling pathways play a critical role in central and peripheral circadian clocks. The REV-ERB/retinoid-related orphan receptor orphan NR subfamily regulates the expression of core clock genes and contributes to the robustness of the clock mechanism. Glucocorticoid and retinoic acid receptors are involved in the resetting of peripheral clocks. Several other NRs such as peroxisome proliferator-activated receptor-alpha, short heterodimer partner, and constitutive androstane receptor act as molecular links between clock genes and specific rhythmic metabolic outputs. The expanding functional links between NRs and circadian clocks open novel perspectives for understanding the hormonal regulation of the mammalian circadian system as well as for exploring the role of circadian clocks in the pathogenesis of NR-related diseases such as cancer and metabolic syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call