Abstract

The persistent threat of climate change is brought on by extreme emissions of greenhouse gases (GHGs). Due to its advantages in converting two principal GHGs (CH4 and CO2) into a synthesis gas (H2 and CO), carbon dioxide reforming of methane has received a lot of interest. However, the main issue with a dry reforming of methane (DRM) that needs to be rapidly tackled is catalyst deactivation caused by sintering and coke formation. In this context, the development of fibrous morphological support materials has emerged as an exciting technique that has shown promise in enhancing the physicochemical characteristics of the catalyst and enabling superior catalytic activity and deactivation resistance during the reaction. The physicochemical characteristics of fibrous zeolite-supported type catalysts, including metal-support interaction, metal dispersion, particle size, surface area, and porous nature, were the main emphasis of this mini-review. Designing suitable catalysts for DRM requires a thorough examination of catalytic properties and their relationship to catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.