Abstract

The pathophysiology of metabolic diseases such as coronary artery disease, diabetes, and obesity is complex and multifactorial. Developing new strategies to prevent or treat these diseases requires in vitro models with which researchers can extensively study the molecular mechanisms that lead to disease. Human pluripotent stem cells and their differentiated derivatives have the potential to provide an unlimited source of disease-relevant cell types and, when combined with recent advances in genome editing, make the goal of generating functional metabolic disease models, for the first time, consistently attainable. However, this approach still has certain limitations including lack of robust differentiation methods and potential off-target effects. This review describes the current progress in human pluripotent stem cell-based metabolic disease research using genome-editing technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call