Abstract

Tube-in-tube flow reactors are emerging as a highly efficient flow chemistry strategy for performing various types of gas-liquid reactions due to their unique characteristics, such as high specific interfacial area, enhanced mass transfer and mixing, reduced material consumption, and safe handling of toxic and flammable gases. In this article we discuss the most recent advancements in utilizing tube-in-tube flow reactors for fundamental and applied studies of high-pressure gas-liquid reactions with carbon monoxide, hydrogen, and syngas. General guidelines for successful assembly of such flow chemistry platforms are discussed. In addition, a perspective on future potential directions for further development of the tube-in-tube flow reactors such as scale-up and increased robustness are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.