Abstract

Established companies have had decades to accumulate masses of data about their customers, suppliers, products and services, and employees. Data mining, also known as knowledge discovery in databases, gives organizations the tools to sift through these vast data stores to find the trends, patterns, and correlations that can guide strategic decision making. Traditionally, algorithms for data analysis assume that the input data contains relatively few records. Current databases however, are much too large to be held in main memory. To be efficient, the data mining techniques applied to very large databases must be highly scalable. An algorithm is said to be scalable if (given a fixed amount of main memory), its runtime increases linearly with the number of records in the input database. Recent work has focused on scaling data mining algorithms to very large data sets. The authors describe a broad range of algorithms that address three classical data mining problems: market basket analysis, clustering, and classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.