Abstract

Inferring users’ interests from their activities on social networks has been an emerging research topic in the recent years. Most existing approaches heavily rely on the explicit contributions (posts) of a user and overlook users’ implicit interests, i.e., those potential user interests that the user did not explicitly mention but might have interest in. Given a set of active topics present in a social network in a specified time interval, our goal is to build an interest profile for a user over these topics by considering both explicit and implicit interests of the user. The reason for this is that the interests of free-riders and cold start users who constitute a large majority of social network users, cannot be directly identified from their explicit contributions to the social network. Specifically, to infer users’ implicit interests, we propose a graph-based link prediction schema that operates over a representation model consisting of three types of information: user explicit contributions to topics, relationships between users, and the relatedness between topics. Through extensive experiments on different variants of our representation model and considering both homogeneous and heterogeneous link prediction, we investigate how topic relatedness and users’ homophily relation impact the quality of inferring users’ implicit interests. Comparison with state-of-the-art baselines on a real-world Twitter dataset demonstrates the effectiveness of our model in inferring users’ interests in terms of perplexity and in the context of retweet prediction application. Moreover, we further show that the impact of our work is especially meaningful when considered in case of free-riders and cold start users.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.