Abstract
Because clinical research is carried out in complex environments, prior domain knowledge, constraints, and expert knowledge can enhance the capabilities and performance of data mining. In this paper we propose an unexpected pattern mining model that uses decision trees to compare recovery rates of two different treatments, and to find patterns that contrast with the prior knowledge of domain users. In the proposed model we define interestingness measures to determine whether the patterns found are interesting to the domain. By applying the concept of domain-driven data mining, we repeatedly utilize decision trees and interestingness measures in a closed-loop, in-depth mining process to find unexpected and interesting patterns. We use retrospective data from transvaginal ultrasound-guided aspirations to show that the proposed model can successfully compare different treatments using a decision tree, which is a new usage of that tool. We believe that unexpected, interesting patterns may provide clinical researchers with different perspectives for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Soft Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.