Abstract

Truck platooning refers to a series of trucks driving in close proximity via communication technologies, and it is considered one of the most implementable systems of connected and automated vehicles, bringing huge energy savings and safety improvements. Properly planning platoons and evaluating the potential of truck platooning are crucial to trucking companies and transportation authorities. This study proposes a series of data mining approaches to learn spontaneous truck platooning patterns from massive trajectories. An enhanced map matching algorithm is developed to identify truck headings by using digital map data, followed by an adaptive spatial clustering algorithm to detect trucks’ instantaneous co-moving sets. These sets are then aggregated to find the network-wide maximum platoon duration and size through frequent itemset mining for computational efficiency. The GPS data were collected from truck fleeting systems in Liaoning Province, China for platooning performance measures and spatiotemporal platooning distribution visualization. Results show that approximately 36% spontaneous truck platoons can be coordinated by speed adjustment without changing routes and schedules. The average platooning distance and duration ratios for these platooned trucks are 9.6% and 9.9%, respectively, leading to a 2.8% reduction in total fuel consumption. This study also distinguishes the optimal platooning periods and space headways for national freeways and trunk roads, and prioritize the road segments with high possibilities of truck platooning. The derived results are reproducible, providing useful policy implications and operational strategies for large-scale truck platoon planning and roadside infrastructure construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.