Abstract

Traffic congestion is a direct reflection of the imbalance between supply and demand for a certain period of time. Owing to the complexity of traffic roads and the propagation of congestion, the evacuation of traffic congestion for local road sections alone cannot achieve significant results. Based on the measured data of traffic flow, this paper combines the topology of the road network and the existence time of congestion to judge the spatio-temporal correlation of congestion between road sections. We proposed a spatio-temporal co-location congestion pattern mining method to discover the orderly set of roads with congestion propagation in urban traffic, and measure its influence in congestion events. The proposed method not only reveals the process of congestion propagation but also uncovers the main propagation paths leading to the large-scale congestion. Finally, we experimented with the algorithm on the traffic dataset in Guiyang city. The experimental results reveal the traffic congestion rule in Guiyang City, including the prevalent co-occurrence of congestion propagation patterns and their influence in congestion events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.