Abstract

Outlier detection is an important task in data mining with numerous applications, including credit card fraud detection, video surveillance, etc. A recent work on outlier detection has introduced a novel notion of local outlier in which the degree to which an object is outlying is dependent on the density of its local neighborhood, and each object can be assigned a Local Outlier Factor (LOF) which represents the likelihood of that object being an outlier. Although the concept of local outliers is a useful one, the computation of LOF values for every data objects requires a large number of κ-nearest neighbors searches and can be computationally expensive. Since most objects are usually not outliers, it is useful to provide users with the option of finding only n most outstanding local outliers, i.e., the top-n data objects which are most likely to be local outliers according to their LOFs. However, if the pruning is not done carefully, finding top-n outliers could result in the same amount of computation as finding LOF for all objects. In this paper, we propose a novel method to efficiently find the top-n local outliers in large databases. The concept of "micro-cluster" is introduced to compress the data. An efficient micro-cluster-based local outlier mining algorithm is designed based on this concept. As our algorithm can be adversely affected by the overlapping in the micro-clusters, we proposed a meaningful cut-plane solution for overlapping data. The formal analysis and experiments show that this method can achieve good performance in finding the most outstanding local outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.