Abstract

The problem of mining top-k co-occurrence items with sequential pattern is defined.Sid-set and Sid-sets with an index are used to reduce the scanning time.Three algorithms including NAM, VAM, and VIAM for mining top-k co-occurrence items with sequential pattern are proposed.Two pruning techniques are proposed and used in VAM and VIAM algorithms to improve the processing time. Frequent sequential pattern mining has become one of the most important tasks in data mining. It has many applications, such as sequential analysis, classification, and prediction. How to generate candidates and how to control the combinatorically explosive number of intermediate subsequences are the most difficult problems. Intelligent systems such as recommender systems, expert systems, and business intelligence systems use only a few patterns, namely those that satisfy a number of defined conditions. Challenges include the mining of top-k patterns, top-rank-k patterns, closed patterns, and maximal patterns. In many cases, end users need to find itemsets that occur with a sequential pattern. Therefore, this paper proposes approaches for mining top-k co-occurrence items usually found with a sequential pattern. The Naive Approach Mining (NAM) algorithm discovers top-k co-occurrence items by directly scanning the sequence database to determine the frequency of items. The Vertical Approach Mining (VAM) algorithm is based on vertical database scanning. The Vertical with Index Approach Mining (VIAM) algorithm is based on a vertical database with index scanning. VAM and VIAM use pruning strategies to reduce the search space, thus improving performance. VAM and VIAM are especially effective in mining the co-occurrence items of a long input pattern. The three algorithms were evaluated using real-world databases. The experimental results show that these algorithms perform well, especially VAM and VIAM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.