Abstract

Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call