Abstract

Campylobacter coli resides in the intestine of several commonly consumed animals, as well as water and soil. It leads to campylobacteriosis when humans eat raw/undercooked meat or come into contact with infected animals. A common manifestation of the infection is fever, nausea, headache, and diarrhea. Increasing antibiotic resistance is being observed in this pathogen. The increased incidence ofC. coli infection, and post-infection complications like Guillain-Barré syndrome, make it an important pathogen. It is essential to find novel therapeutic targets and drugs against it, especially with the emergence of antibiotic-resistant strains. In the current study, genomes of 89 antibiotic-resistant strains ofC. coliwere downloaded from the PATRIC database. Potent drug targets (n = 36) were prioritized from the core genome (n = 1,337 genes) of this species. Riboflavin synthase was selected as a drug target and pharmacophore-based virtual screening was performed to predict its inhibitors from the NPASS (n = ~ 30,000 compounds) natural product library. The top three docked compounds (NPC115144, NPC307895, and NPC470462) were selected for dynamics simulation (for 50ns) and ADMET profiling. These identified compounds appear safe for targeting this pathogen and can be further validated by experimental analysis before clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call