Abstract

Although, the precise host defence mechanism(s) is not completely understood, T cell-mediated immune responses is believed to play a pivotal role in controlling parasite infection. Here we target the stage dependent over expressed gene. Here, the consensus based computational approach was adopted for the screening of potential major histocompatibility complex class I restricted epitopes. Based on the computational analysis and previously published report, a set 19 antigenic proteins derived from Leishmania donovani were screened for further characterization as vaccine candidates. A total of 49 epitopes were predicted, which revealed a comprehensive binding affinity to the 40 different MHC class I supertypes. Based on the population coverage and HLA cross presentation, nine highly promiscuous epitopes such as LTYDDVWTV (P1), FLFPQRTAL(P2), FLFSNGAVV (P3), YIYNFGIRV (P4), YMTAAFAAL (P5), KLLRPFAPL (P6), FMLGWIVTI (P7), SLFERNKRV (P8), and SVWNRIFTL (P9) which have either a high or an intermediate TAP binding affinity were selected for further analysis. Theoretical population coverage analysis of polytope vaccine (P1-P9) revealed more than 92% population. Stimulation with the cocktail of peptide revealed a proliferative CD8+ T cell response and increased IFN-γ production. An upregulated NF-κB activity is thought to be play a pivotal role in T cell proliferation against the selected peptide. The Th1-type cytokine profile (presence of IFN-γ and absence of IL-10) suggests the potentiality of the cocktail of epitope as a subunit vaccine against leishmaniasis. However, the efficiency of these epitopes to trigger other Th1 cytokines and chemokines in a humanized mice model could explore its plausibility as a vaccine candidate. J. Cell. Biochem. 119: 378-391, 2018. © 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.