Abstract
Independent component analysis (ICA) can blindly separates the input ERP data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain regions. In this study, we use ICA to illustrate that the P300 components in two ERPs recorded under various conditions or tasks are both mainly contributed from a few independent sources. ICA decomposition also indicates a new method to compare P300 components between two ERPs induced by two related tasks. Our comparisons are made on those independent sources contributed to the P300 components, rather than on the ERP waveforms directly. This novel approach identifies not only the similar or common independent components in both conditions that bring about a common part in ERP time courses, but also those different components induced by the different parts in ERP waveforms. Our study suggests that the ICA method is a useful tool to study the brain dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.