Abstract

Human navigation in an unknown environment requires an understanding of the spatial relationships of the terrain. For example, a soldier who is on a reconnaissance mission in a new city needs to “know” the spatial layout of the surroundings with high confidence. Oftentimes, this understanding must be acquired within a very short amount of time and with limited sensory inputs. The soldier would benefit from a digital avatar that draws inferences about the spatial layout of the city based on an initial set of observations and guides the soldier either in further exploring the environment or in making decisions based on these inferences. In this paper, we present and evaluate an inductive approach to learning spatial associations using sensory data that is available from the simulation environment of a computer game, Unreal Tournament. We study two kinds of spatial relationships between nodes on a level of a game map: nodes that are placed near each other to satisfy some spatial requirement and nodes that are placed near each other to satisfy the design preferences of a level architect. We show that we can infer both kinds of relationships using an association rule mining algorithm. Furthermore, we show how to use an ontology to distinguish between these relationships in order to discover different types of spatial arrangements on a specific map. We discuss how the inferred associations can be used to control an avatar that makes recommendations for navigating unexplored areas on a map. We conclude with some thoughts on the applicability of our methods to scenarios in the real world, beyond the simulation environment of a game, and on how the learned associations can be represented and queried by a simple question-answer type system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call