Abstract
AbstractWith the extensive application of spatial databases to various fields ranging from remote sensing to geographical information systems, computer cartography, environmental assessment, and planning, discovery of interesting and hidden knowledge in the spatial databases is a considerable chore for classifying and using the spatial data and knowledge bases. The literature presents different spatial data mining methods to mine knowledge from spatial databases. In this paper, spatial association rules are mined to automatic grouping of spatial data objects using a candidate generation process with three constraint measures, such as support, confidence, and lift. Then, the proposed multiple kernel-based probabilistic clustering is applied to the associate vector to further group the spatial data objects. Here, membership probability based on probabilistic distance is used with multiple kernels, where exponential and tangential kernel functions are utilized. The performance of the proposed method is analyzed with three data sets of three different geometry types using the number of rules and clustering accuracy. From the experimentation, the results proved that the proposed multi-kernel probabilistic clustering algorithm achieved better accuracy as compared with the existing probabilistic clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.