Abstract
Carbohydrate sugar chains or glycans, the third major class of macromolecules, hold branch shaped tree structures. Glycan motifs are known to be two types: (1) conserved patterns called 'cores' containing the root and (2) ubiquitous motifs which appear in external parts including leaves and are distributed over different glycan classes. Finding these glycan tree motifs is an important issue, but there have been no computational methods to capture these motifs efficiently. We have developed an efficient method for mining motifs or significant subtrees from glycans. The key contribution of this method is: (1) to have proposed a new concept, 'á-closed frequent subtrees', and an efficient method for mining all these subtrees from given trees and (2) to have proposed to apply statistical hypothesis testing to rerank the frequent subtrees in significance. We experimentally verified the effectiveness of the proposed method using real glycans: (1)We examined the top 10 subtrees obtained by our method at some parameter setting and confirmed that all subtrees are significant motifs in glycobiology. (2) We applied the results of our method to a classification problem and found that our method outperformed other competing methods, SVM with three different tree kernels, being all statistically significant. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.