Abstract

Translating Out-Of-Vocabulary (OOV) terms is crucial for Cross Language Information Retrieval (CLIR). In this paper, we propose a method that automatically acquires a large quantity of OOV translations from the web. Different from previous approaches that rely on a finite set of hand-crafted extraction rules, our method adaptively learns translation extraction patterns based on the observation that translation pairs on the same page tend to appear following similar layout patterns. The learned patterns are leveraged in a discriminative translation extraction model that treats translation extraction from a mixed language bilingual web page as a sequence labeling task in order to exploit useful relations among translation pairs on the page. Experiments demonstrate that our proposed method out-performs earlier work with marked improvement on OOV translation mining quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.