Abstract
Most recent approaches for the zero-shot cross-modal image retrieval map images from different modalities into a uniform feature space to exploit their relevance by using a pre-trained model. Based on the observation that manifolds of zero-shot images are usually deformed and incomplete, we argue that the manifolds of unseen classes are inevitably distorted during the training of a two-stream model that simply maps images from different modalities into a uniform space. This issue directly leads to poor cross-modal retrieval performance. We propose a bi-directional random walk scheme to mining more reliable relationships between images by traversing heterogeneous manifolds in the feature space of each modality. Our proposed method benefits from intra-modal distributions to alleviate the interference caused by noisy similarities in the cross-modal feature space. As a result, we achieved great improvement in the performance of the thermal v.s. visible image retrieval task. The code of this paper: https://github.com/fyang93/cross-modal-retrieval
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.