Abstract

In the past years most of the research have been conducted on high average-utility itemset mining (HAUIM) with wide applications. However, most of the methods are used for centralized databases with a single machine performing the mining job. Existing algorithms cannot be applied for big data. We try to solve this issue, by developing a new method for mining high average-utility itemset mining in big data. Map Reduce also used in this paper. Many algorithms were proposed only mine HAUIs using a single minimum high average-utility threshold. In this paper we also try solve this by mining HAUIs multiple minimum high average-utility thresholds. We have developed two pruning methods namely Reduction of utility co-occurrence pruning Method (RUCPM) and Pruning without Scanning Database (PWSD).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.