Abstract

CRISPR/Cas9 is one of the robust and effective gene manipulation tools which has been widely applied in various organisms. In this study, the plipastatin gene cluster was successfully expressed in genome-modified Bacillus subtilis 1A751 by disrupting the surfactin operon (srf) through CRISPR/Cas9 technology. The presumed plipastatin biosynthetic pathway was proposed based on the analysis of its biosynthetic gene cluster. Two new plipastatins were identified by a combination of ultra-high performance liquid chromatography-coupled electron spray ionization-tandem mass spectrometry and gas chromatography-mass spectrometry analyses, together with nine known plipastatins or their derivatives. The yield of plipastatin was as high as 1600 mg/L which is the highest reported to date. Antimicrobial experiments revealed that its methanolic extracts exhibited powerful inhibitory effects on the growth of the tested pathogens and fungi. The results from this investigation highlight the remarkable utility of CRISPR/Cas9 in mining new plipastatins and increasing the total plipastatin yield, providing a new pipeline for the industrial application of plipastatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call