Abstract
Association rules tell us interesting relationships between different items in transaction database. But traditional association rule has two disadvantages. Firstly it assumes every two items have same significance in database, which is unreasonable in many real applications and usually leads to incorrect results. On the other hand, traditional association rule representation contains too much redundancy which makes it difficult to be mined and used. This paper addresses the problem of mining weighted concise association rules based on closed itemsets under weighted support-significant framework, in which each item with different significance is assigned different weight. Through exploiting specific technique, the proposed algorithm can mine all weighted concise association rules while duplicate weighted itemset search space is pruned. As illustrated in experiments, the proposed method leads to good results and achieves good performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.