Abstract

In this paper, we examine a new data mining issue of mining association rules from customer databases and transaction databases. The problem is decomposed into two subproblems: identifying all the large itemsets from the transaction database and mining association rules from the customer database and the large itemsets identified. For the first subproblem, we propose an efficient algorithm to discover all the large itemsets from the transaction database. Experimental results show that by our approach, the total execution time can be reduced significantly. For the second subproblem, a relationship graph is constructed according to the identified large itemsets from the transaction database and the priorities of condition attributes from the customer database. Based on the relationship graph, we present an efficient graph-based algorithm to discover interesting association rules embedded in the transaction database and the customer database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.