Abstract
High utility itemset mining (HUIM) is the task of finding all items set, purchased together, that generate a high profit in a transaction database. In the past, several algorithms have been developed to mine high utility itemsets (HUIs). However, most of them cannot properly handle the exponential search space while finding HUIs when the size of the database and total number of items increases. Recently, evolutionary and heuristic algorithms were designed to mine HUIs, which provided considerable performance improvement. However, they can still have a long runtime and some may miss many HUIs. To address this problem, this article proposes two algorithms for HUIM based on Hill Climbing (HUIM-HC) and Simulated Annealing (HUIM-SA). Both algorithms transform the input database into a bitmap for efficient utility computation and for search space pruning. To improve population diversity, HUIs discovered by evolution are used as target values for the next population instead of keeping the current optimal values in the next population. Through experiments on real-life datasets, it was found that the proposed algorithms are faster than state-of-the-art heuristic and evolutionary HUIM algorithms, that HUIM-SA discovers similar HUIs, and that HUIM-SA evolves linearly with the number of iterations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Management Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.