Abstract

In an era of many diseases and increased longevity, more attention has been paid to chronic diseases that require constant health care. Under this circumstance, the development of research and development (R&D) for smart-device-based constant health care has drawn great attention. With the emergence of wearable devices, personal health devices (PHDs), and smartphones, various contents for constant health care have been developed. By using these devices, the users are able to collect personal health records (PHRs) that include data such as activity amount, heart rate, stress, and blood sugar. The range of the collected PHRs can be limited depending on the equipment or the surrounding environment. To overcome this problem, it is necessary to make a comparison with similar users in a cluster. Also, it is necessary to provide a service that can analyze and visually display the collected personal-health information. In this paper, we propose the mining of health-risk factors using the PHR similarity in a hybrid P2P network. This is a method of predicting a user’s health status using similarity-based data mining, where the PHRs are employed in a hybrid P2P environment consisting of a peer, a server, and a gateway. In a hybrid P2P environment, a user receives feedback on the result of a structured-data analysis. A peer searches for a different peer and gateway through a server and exchanges information. Depending on the data type, the PHR is divided into medical health examination, self-diagnosis, and personal-health data. The medical health examination contains the personal-health data that are generated regularly by a medical institution. Self-diagnosis represents the data of mental health, pains, and fatigue that can be changed often but cannot be collected by devices. Personal-health data mean the data that can be collected by individuals in everyday life. For the PHR-data analysis, an index is given to each attribute, and preprocessing is performed after a binary-code conversion. To predict a user’s health status, the PHR data are clustered on the basis of similarity in a hybrid P2P environment. The similarity between a user’s PHR and a PHR that is searched for in the network is measured. After the measurement, an index is given to the PHR that meets the minimum similarity and the PHR is incorporated into a Similarity PHR Group. The Similarity PHR Group flexibly changes depending on a user’s PHR status and the statuses of the users who have accessed the hybrid P2P network. A representative value of the Similarity PHR Group is extracted and is then compared with the user’s PHR to judge the user’s health status. The proposed method is suitable for a smart health service for chronic diseases requiring constant care, elderly health, and aftercare. This is a user-oriented health-care and promotion service wherein a user’s health status can be predicted through the mining of the health-risk factors of PHRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.