Abstract

Protein-RNA interactions play important roles in the biological systems. The goal of this study is to discover structural patterns in the protein-RNA interfaces that contribute the affinity of the interactions. We represented known protein-RNA interfaces using graphs and then identify common subgraphs enriched in the interfaces. Comparison of the discovered graph patterns with UniProt annotations showed that the graph patterns had a significant overlap with residue sites that had been proven by experimental methods to be crucial for RNA bindings. Using 200 patterns as input features, a Support Vector Machine method was able to classify protein surface patches into RNA-binding sites and non-RNA-biding sites with 84.0% accuracy and 88.9% precision. We built a simple scoring function that calculated the total number of the graph patterns that occurred in a protein-RNA interface. That scoring function was able to discriminate near native protein-RNA complexes from docking decoys with a performance comparable with a state-of-the-art complex scoring function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.