Abstract

Mining generalized association rules in the presence of the taxonomy has been recognized as an important model in data mining. Earlier work on generalized association rules confined the minimum support to be uniformly specified for all items or for items within the same taxonomy level. In this paper, we extended the scope of mining generalized association rules in the presence of taxonomy to allow any form of user-specified multiple minimum supports. We discussed the problems of using classic Apriori itemset generation and presented two algorithms, MMS_Cumulate and MMS_Stratify, for discovering the generalized frequent itemsets. Empirical evaluation showed that these two algorithms are very effective and have good linear scale-up characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.