Abstract

This paper presents an algorithm for mining fuzzy temporal patterns from a given process instance. The fuzzy representation of time intervals embedded between the activities is used for this purpose. Initially, the activities are portrayed with their temporal relationships through temporal graphs and then, the defined data structures are used to retrieve the data suitable for the proposed algorithm. Similar to the familiar k-itemsets and k-dim sequences, their counterparts are introduced in this work. The proposed process-instance level data structure generates an optimum number of temporal itemsets. The proposed algorithm differs from the other existing algorithms on this topic in the representation of the mined data and patterns. An example is provided to demonstrate the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.