Abstract
Predicting election results is a challenging task for big data analytics. Simple approaches count the number of tweets mentioning candidates or parties to do the prediction. In fact, many other factors may cause the candidates to win or lose in an election, such as their political opinions, social issues, and scandals. In this paper, we mine rules of event sequences from social media to predict election results. An example rule for a candidate can be as follows: “(big event, positive) → (small event, negative) → (big event, positive)” implies a victory to this candidate. We detect events and decide event types to generate event sequences and then apply the rule-based classifier to build the prediction model. A series of experiments are performed to evaluate our approaches and the experiment results reveal that the accuracy of our approaches on predicting election results is over 80 % in most of the cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.