Abstract
Disease transmission network can provide important information for individuals to protect themselves and to support governments to prevent and control infectious diseases. Current studies on disease transmission network mostly focus on scenarios in small, confined areas. We propose to construct disease transmission network using health status time series computed based on health insurance claims. We adopted Granger causality tests to identify potential links from the health status time series from all pairs of individuals. We evaluated our approach by predicting future health care seeking activates for similar diseases based on past health care seeking activates of neighbors in the disease network. The results suggest that the transmission network is able to improve prediction performance in a small random sample of 500 individuals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.