Abstract

Data mining from relations is becoming increasingly important with the advent of parallel database systems. In this paper, we propose a new algorithm for mining association rules from relations. The new algorithm is an enhanced version of the SETM algorithm (Houtsma & Swami 1995), and it reduces the number of candidate itemsets considerably. We implemented and evaluated the new algorithm on a parallel NCR Teradata database system. The new algorithm is much faster than the SETM algorithm, and its performance is quite scalable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.