Abstract

In recent times Formal Concept Analysis (FCA), in which the data is represented as a formal context, has gained popularity for Association Rules Mining (ARM). Application of ARM in health care datasets is challenging and a highly rewarding problem. However, datasets in the medical domain are of high dimension. As the dimensionality of dataset increases, size of the formal context as well as complexity of FCA based ARM also increases. To handle the problem of high dimensionality and mine the associations, we propose to apply Singular Value Decomposition (SVD) on the dataset to reduce the dimensionality and apply FCA on the reduced dataset for ARM. To demonstrate the proposed method, experiments are conducted on Tuberculosis (TB) and Hypertension (HP) datasets. Results indicate that with fewer concepts, SVD based FCA has achieved the performance of FCA on TB data and performed better than FCA on HP data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.