Abstract
Data mining applications have enormously altered the strategic decision-making processes of organizations. The application of association rules algorithms is one of the well-known data mining techniques that have been developed to cope with multidimensional databases. However, most of these algorithms focus on multidimensional data models for transactional data. As data warehouses can be presented using a multidimensional model, in this paper we provide another perspective to mine association rules in data warehouses by focusing on a measurement of summarized data. We propose four algorithms — VAvg, HAvg, WMAvg, and ModusFilter — to provide efficient data initialization for mining association rules in data warehouses by concentrating on the measurement of aggregate data. Then we apply those algorithms both on a non-repeatable predicate, which is known as mining normal association rules, using GenNLI, and a repeatable predicate using ComDims and GenHLI, which is known as mining hybrid association rules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.