Abstract

With the wide applications of computers and automated data gathering tools, massive amounts of data have constantly collected in databases, which create immense demand for analyzing data and turning them into useful knowledge. Therefore, Knowledge Discovery and Data mining has become a research field in recent years to analyze the data in large databases. Association rule mining is one of the dominant methods for market basket analysis, which analyzes customer buying habits. The problem of association rule mining is that there are so many promising rules; it is obvious that such a vast amount of rules cannot be processed by inspecting each one. Therefore efficient algorithms restrict the search space and check only a subset of all rules. Boolean algorithm is one technique for mining association rules. The first objective of this study is to generate Association rules from massive databases in order to entrepreneurs can enlarge their own marketing strategies. The second objective of this study is to implement the program in the most efficient way in order to decrease the processing time and the memory consumption. This study can help retailers to build marketing strategies by gaining information about which items are frequently purchased together by customers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.