Abstract
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. It is to be determined how these features, along with the stringent mission requirements placed on the vehicle, affect its trajectory performance. In this paper, a trajectory optimization problem for a generic hypersonic lifting body will be formulated, a solution method outlined, and results presented. The solution sought is a minimum-fuel trajectorv for orbit injection. It is also desired to study the effect of heating constraints on the vehicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.