Abstract

The minimum-energy translational trajectory planning algorithm is proposed for battery-powered three-wheeled omni-directional mobile robots (TOMRs). We have chosen a practical cost function as the total energy drawn from the batteries, in order to lengthen the operational time of a mobile robot with given batteries. After establishing the dynamic equations of TOMRs, the optimal control theory is used to solve the minimum-energy trajectory, which gives the velocity profile in analytic form. Various simulations are performed and the consumed energy is compared to other velocity trajectories. Simulation results reveal that the energy saving is achieved of up to 2.4% compared with loss-minimization control, and up to 4.3% compared with conventional trapezoidal velocity profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.