Abstract

The geometric codes are the duals of the codes defined by the designs associated with finite geometries. The latter are generalized Reed–Muller codes, but the geometric codes are, in general, not. We obtain values for the minimum weight of these codes in the binary case, using geometric constructions in the associated geometries, and the BCH bound from coding theory. Using Hamada‘s formula, we also show that the dimension of the dual of the code of a projective geometry design is a polynomial function in the dimension of the geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.