Abstract
AbstractTo transfer bending moments in building components consisting of a material without tensile strength always requires a simultaneously acting normal force. Accordingly, masonry walls exposed to horizontal loads (e.g. wind) require a minimum vertical load, so that the resultant stress at the mid‐height of the wall remains the same within the cross‐section. As part of the A2 amendment to DIN EN 1996‐3/NA, this verification of walls subjected to low vertical loads, such as outer walls on the top floor exposed to high wind load was implemented in the National Annex. Part 3 of DIN EN 1996‐3 includes a similar standard regulation for verification of the minimum vertical load, which is based on an arch effect within the wall cross‐section.Based on this technical background and taking into account the main influencing parameters, a verification model is presented here which realistically describes the load‐bearing behaviour of unreinforced masonry walls subjected primarily to bending. Apart from the bending moments due to wind load, an initial eccentricity of the wall as well as second order effects due to wall deformations also have to be taken into account. In addition, a simple approximation equation is provided for the practical determination of the required minimum vertical load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.