Abstract
In this paper, the problem of moving load identification using pure displacement measurements is addressed. It is known that when no assumptions are made on the statistics of the unknown loads and a minimum variance unbiased (MVU) estimation approach is adopted, the existing methods in the literature suffer from a very elevated load estimation uncertainty. This elevated uncertainty is due to ill-posedness of the problem. In this paper a new method is proposed that addresses this issue via an MVU smoothing approach. To alleviate this problem, a MVU smoothing algorithm is proposed in this study, via modification of a MVU smoothing Bayesian estimator proposed by some of the co-authors of this paper hence referred to as MSBE, which leads to substantial decrease in the moving load estimation uncertainties using pure displacement measurements. The efficacy of the MSBE is studied through a simulated experiment corresponding to a numerical model of an operating steel railway bridge with riveted connections and a multi-axle load. The selection of the hyperparameters of the smoothing and filtering techniques are discussed, and the optimal values are presented. The parametric studies show that the proposed method can yield highly accurate results, and substantially outperforms a celebrated MVU filter proposed by Gillijns and De Moor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.