Abstract
In this work, we presented a theoretical investigation of the minimum-value distribution inside complex electromagnetic environments. In particular, a statistical model for characterizing the minimum value of the complex-value field or power inside a dynamic mode-tuned or mode-stirred reverberation chamber is presented and discussed. Such an EM environment serves as an emulator of multipath radiowave propagation for indoor/outdoor wireless communication channels. It is found that, for both overmoded and undermoded regimes, the generalized extreme value distribution leads to the reverse Frechet and Weibull types for complex-value (Cartesian and total) fields and for the total energy (or intensity). These distributions are stable and follow from the convergent behavior of the lower tail for their corresponding parent distribution of the Cartesian field magnitude, namely a χ 2. On the other hand, received power exhibits a Pareto-type distribution because of the unbounded left tail of the negative exponential parent distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: annals of telecommunications - annales des télécommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.