Abstract

The problem of determining high-accuracy minimum-time Earth-orbit transfers using low-thrust propulsion is considered. The optimal orbital transfer problem is posed as a constrained nonlinear optimal control problem and is solved using a variable-order Legendre–Gauss–Radau quadrature orthogonal collocation method. Initial guesses for the optimal control problem are obtained by solving a sequence of modified optimal control problems where the final true longitude is constrained and the mean square difference between the specified terminal boundary conditions and the computed terminal conditions is minimized. It is found that solutions to the minimum-time low-thrust optimal control problem are only locally optimal, in that the solution has essentially the same number of orbital revolutions as that of the initial guess. A search method is then devised that enables computation of solutions with an even lower cost where the final true longitude is constrained to be different from that obtained in the original locally optimal solution. A numerical optimization study is then performed to determine optimal trajectories and control inputs for a range of initial thrust accelerations and constant specific impulses. The key features of the solutions are then determined, and relationships are obtained between the optimal transfer time and the optimal final true longitude as a function of the initial thrust acceleration and specific impulse. Finally, a detailed postoptimality analysis is performed to verify the close proximity of the numerical solutions to the true optimal solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.